Titanium phosphate for Fuel Cell Proton Conduction M embranes

نویسنده

  • A. T. T. Tran
چکیده

Environmental issues due to increases in emissions of air pollutants and greenhouse gases are driving the development of clean energy delivery technologies such as fuel cells. Low temperature Proton Exchange Membrane Fuel Cells (PEMFC) use hydrogen as a fuel and their only emission is water. W hile significant advances have been made in recent years, a major limitation of the current technology is the cost and materials limitations of the proton conduction membrane. The proton exchange membrane performs three critical functions in the PEMFC membrane electrode assembly (MEA): (i) conduction of protons with minimal resistance from the anode (where they are generated from hydrogen) to the cathode (where they combine with oxygen and electrons, from the external circuit or load), (ii) providing electrical insulation between the anode and cathode to prevent shorting, and (iii) providing a gas impermeable barrier to prevent mixing of the fuel (hydrogen) and oxidant. The PFSA (perfluorosulphonic acid) family of membranes is currently the best developed proton conduction membrane commercially available, but these materials are limited to operation below 100 o C (typically 80 o C, or lower) due to the thermochemical limitations of this polymer. For both mobile and stationary applications, fuel cell companies require more durable, cost effective membrane technologies capable of delivering enhanced performance at higher temperatures (typically 120 o C, or higher. This is driving research into a wide range of novel organic and inorganic materials with the potential to be good proton conductors and form coherent membranes. There are several research efforts recently reported in the literature employing inorganic nanomaterials. These include functionalised silica phosphates [1,2], fullerene [3] titania phosphates [4], zirconium pyrophosphate [5]. This work addresses the functionalisation of titania particles with phosphoric acid. Proton conductivity measurements are given together with structural properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Studies on the SPEEK membrane with low degree of sulfonation as a stable proton exchange membrane for fuel cell applications

Sulfonated poly (ether ether ketone) (SPEEK) with a low degree of sulfonation (DS = 40%) was prepared for proton exchange membrane fuel cells (PEMFC). Poly (ether ether ketone) (PEEK) was sulfonated in concentrated H2SO4 under N2 atmosphere and characterized by the hydrogen nuclear magnetic resonance (H-NMR) technique. After preparation of the SPEEK polymer, the obtained polymer was dissolved i...

متن کامل

Numerical study on the performance prediction of a proton exchange membrane (PEM) fuel cell

An electrochemical analysis on a single channel PEM fuel cell was carried out by Computational Fuel Cell Dynamics (CFCD). The objective was to assess the latest developments regarding the effects of change in the current collector materials, porosity of electrodes and gas diffusion layer on the fuel cell power density. Graphite, as the most applicable current collector material, was applied fol...

متن کامل

Porous Proton Exchange Membrane Based Zeolitic Imidazolate Framework-8 (ZIF-8)

Metal-organic frameworks (MOFs) are emerging material class for the past few years due to its tailorability characteristics for various applications. However, the research and development (R&D) of MOFs is still scarce for fuel cell system. This may be due to the several difficulties faced in selecting a good MOFs-based electrolyte, which consequently affects both proton conduction and methanol ...

متن کامل

Synthesis, characterization and proton transport property of crystalline - zirconium titanium phosphate, a tetravalent bimetallic acid salt

An advanced inorganic material of the class of tetravalent bimetallic acid (TBMA) salt zirconium titanium phosphate (ZTP) has been synthesized by sol gel route. ZTP has been characterized for elemental analysis by ICP-AES, FTIR, TGA and X-ray diffraction studies. Ion exchange capacity (IEC) of material was determined and effect of calcination (373-773 K) on IEC studied. Chemical resistivity of ...

متن کامل

Approaches and technical challenges to high temperature operation of proton exchange membrane fuel cells

Water loss and the coincident increase in membrane resistance to proton conduction are significant barriers to high performance operation of traditional proton exchange membrane fuel cells at elevated temperatures where the relative humidity may be reduced. We report here approaches to the development of high temperature membranes for proton exchange membrane fuel cells; composite perfluorinate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007